(7x^2+4x-3)=(x-1)(x+3)

Simple and best practice solution for (7x^2+4x-3)=(x-1)(x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7x^2+4x-3)=(x-1)(x+3) equation:



(7x^2+4x-3)=(x-1)(x+3)
We move all terms to the left:
(7x^2+4x-3)-((x-1)(x+3))=0
We get rid of parentheses
7x^2+4x-((x-1)(x+3))-3=0
We multiply parentheses ..
7x^2-((+x^2+3x-1x-3))+4x-3=0
We calculate terms in parentheses: -((+x^2+3x-1x-3)), so:
(+x^2+3x-1x-3)
We get rid of parentheses
x^2+3x-1x-3
We add all the numbers together, and all the variables
x^2+2x-3
Back to the equation:
-(x^2+2x-3)
We add all the numbers together, and all the variables
7x^2+4x-(x^2+2x-3)-3=0
We get rid of parentheses
7x^2-x^2+4x-2x+3-3=0
We add all the numbers together, and all the variables
6x^2+2x=0
a = 6; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·6·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*6}=\frac{-4}{12} =-1/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*6}=\frac{0}{12} =0 $

See similar equations:

| 13=2h+7 | | -1/3+x/4=-2 | | 43t-21t-23=54 | | r+`=-4 | | 4x+5(3x-3)=91 | | -4/3x-6/5=-1/2 | | (10-9y)+73=180 | | 10x-14=46 | | -13+x4=-2 | | . | | s^2-7s-14=2 | | (7x+-17)+(2x+8)=180 | | X-2(x+4)=2 | | . | | 12+15n=–18 | | . | | 115+x=110 | | . | | (47*x+12)²+63=0 | | 4(m-3)=2(m–4.5) | | 10x-6=12x-4 | | C2+7c+12=(c+)(c+) | | 3(-4x-3)=71+8x | | 6)3(-4x-3)=71+8x | | 4y−10=2 | | 2/3*45=h | | 30=3+z | | -(7-7x)=5x+3 | | 90=3y= | | 2x-1+18=180 | | 9−4z=3 | | 2b+(b-25)=2 |

Equations solver categories